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Introduction
The shock wave which is a discontinuity in the high-speed compressible flow
can be captured sufficiently by using the usual second-order high resolution
TVD schemes, for example the Chakravarthy-Osher TVD scheme[1] and the
Lax-Wendroff TVD scheme[2,3]. However, it is difficult to simulate sharply
weak discontinuities like a slip surface or contact surface by such high-
resolution schemes. The reason is that a slip line emanates from a junction of
shock waves, is smeared mainly by the numerical diffusion on the downstream
side of the junction and does not return to the original sharp slip line again.
Therefore, in the simulation of the weak discontinuity, it is necessary to use the
scheme which has a very small truncation error, while for capturing the shock
wave the conservative character of the scheme plays an important role.

We have recently proposed the fourth(fifth)-order high resolution TVD
schemes[4,5] which are higher-order versions of the third-order Chakravarthy-
Osher scheme, and by using these schemes have been able to simulate the slip
lines fairly well. In the present paper, some numerical schemes for the
compressible flows recently developed in our laboratory will be described, in
particular a stabilization process for the fourth(fifth)-order schemes. In this
fourth-order scheme, all the slopes ∆uj+1/2 in the correction terms of the third-
order Chakravarthy-Osher scheme, which are added to the first-order upstream-
difference scheme to modify the third order, are simply replaced by

where ∆3u is the third-order difference of u. Therefore, the existing programmes
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of the Chakravarthy-Osher scheme can be rewritten quite easily into
programmes of the present fourth-order scheme, and computational efforts are
barely increased by this rewriting.

If the function u(x) itself and the derivatives u′(x), u′′ (x), … are sufficiently
smooth, and the Taylor series of uj converges well, then the solution of the
transport equation can be computed stably by an appropriate higher-order
scheme using a sufficiently smooth fine mesh. However, in the practical
calculation, the slopes ∆uj+1/2 do not always vary so smoothly and even contain
some numerical disturbances. Therefore, the solution becomes more unstable
by using the higher-order scheme, because the modified slopes Duj+1/2 in
general tend to contain magnified disturbances. Key points of the proposed
method are that the third-order differences are expressed as

and that the values of ∆3uj+1/2 are restricted by operating the minmod function
to the curvatures ∆2uj. In the Chakravarthy-Osher scheme, the values of the
second(third)-order correction terms are restricted by the limiter function in
order to prevent the occurrence of new extremum points. In the present scheme,
in addition to this restriction, the values of the fourth(fifth)-order correction
terms are restricted by another limiter function in order to suppress the
occurrence of new inflection points.

In the following section, fundamental equations of the compressible
turbulent flows and an outline of our schemes will be described. The next
section is devoted to stabilization of the fourth(fifth)-order TVD scheme. Then,
the recently developed efficient algorithms for the delta-form implicit schemes
are briefly explained. Finally, some numerical results of steady and unsteady
transonic flows through a turbine cascade are shown.

Fundamental equations and numerical schemes
The governing equations of compressible turbulent flows used in the practical
computation are the Reynolds-averaged compressible Navier-Stokes equations
and some turbulence model. Here the N-S equations of volume flux JU in general
curvilinear coordinates[6] and the low Reynolds number k-ε turbulence model
modified by Chien[7] are used. The N-S equations are

(1)

where the dependent variable vectors q̂ and q̃, the flux vectors F̂i and F̃i, the
diffusion term D̂, and the linear transformation matrix B are
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(2)

R̃ is an additional term introduced to express the flux term in conservative form,
ĝ and g̃ are the force terms, U, V and W are the contravariant velocities, E is the
stagnation internal energy and H is the stagnation enthalpy. J = ∂(x1, x2,
x3)/∂(ξ1, ξ2, ξ3), ξ i, j = ∂ξ i/∂xj and gij = ∇ ξ i · ∇ ξj. The static pressure and the
static temperature can be obtained from the equation of state

(3)

The Cartesian components of the viscous and Reynolds stress tensor τij and the
heat flux κT, j for the eddy viscosity turbulence model are given by

(4)

where Pr and Prt are the usual and turbulent Prandtl numbers.
The eddy viscosity for the low Reynolds number k-ε model is expressed as

(5)

and the turbulence kinetic energy k and the dissipation rate ε are obtained by
solving the transport equations
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(6)

where

(7)

P = ρu′iu′j ui, j is the production, d is the distance from the solid wall and Cµ, Ci,
fµ and fi are the empirical constants and functions which can be found in [7].
The turbulence transport equations of (6) are usually solved simultaneously
with the Reynolds averaged flow equations of (1).

The flux vector F̂i can be linearized and diagonalized in a way similar to the
flux vector F̂i.

(8)

where
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(9)

φ2 = 12 γ̃u2, αi = γ̃uk∂xk/∂ξi and γ̃ = γ – 1.

In the calculation of the steady flows, the efficient time-marching method by the
delta-form implicit schemes is used. Applying the trapezoidal law to the
fundamental equations (1) and (6), rewriting into the delta-form and using the
linearization of (8), we obtain

(10)
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where

(11)

Similarly, in the calculation of the unsteady flows, applying the second-order
Crank-Nicholson method to (1) and (6) and further using the Newton iteration to
make the solution converge at each time step, we obtain the equation of delta-
form implicit scheme

(12)

where

q̃(0) = q̃n, q̃(m) (m ≥ 1) is the m-th approximation of q̃n+1. The solution usually
converges within three to five time iterations.

The right-hand side of (10) or (12) means residuals of the fundamental
equations. The accuracy of the solution only depends on RHS. Therefore, the
value of RHS must be calculated exactly using a higher-order upstream-
difference scheme in the somewhat simple expression of the left-hand side of (1).
∆q̃n and ∆q̃(m) are the corrections of q̃ and q̃n+1, respectively. Since the accuracy
is independent of the left-hand-side operator, the left-hand side is treated
approximately using the simplest and most stable first-order upstream-
difference scheme. θ is usually taken as 1, and then these schemes become TVD
stable even for the large value of ∆t.

Higher-order TVD schemes
The first derivatives in (11) are approximated by the higher-order finite-
differences written in the conservative form

(13)

where h is the numerical flux function of f, and for the first-order upstream-
difference scheme it becomes as

(14)

And for the second(third)-order Chakravarthy-Osher TVD scheme the flux
function is
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(15)

where

(16)

minmod (x,y) = sign (x) max [0, min{|x|, sign (x) y}].
Let us consider the linearization of flux ∆f = a∆u, where a = ∂f/∂u is the phase
velocity. In order to obtain the reasonable numerical flux from (13) to (16), the
upstreaming must be made using the common phase velocity a±

l+1/2 as

(17)

or according to the sign of a±
l+1/2 as

(18)

a± = (a ±|a|)/2.

If no slope ∆fj+1/2 is restricted by the limiter, then the truncation errors of (15)
are

Therefore, the C-O scheme is third order only for κ = 1/3. The flux function of
the fourth(fifth)-order upstream-difference scheme is

(19)

where
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(20)

This flux function is a sum of the flux function of third-order C-O scheme and
the fourth(fifth)-order corrections which are the third-order differences. The
truncation errors of (19) are

Therefore, this scheme is fifth order only for φ= 1/5, but we can obtain similar
excellent results for φclose to 1/5.

The TVD schemes of (19) are considered next. Referring to the TVD scheme
of (15), we find that the TVD condition is at once satisfied by the equation

(21)

where

(22)
In order to modify the scheme in fifth order, Dfj+1/2 must be taken as

(23)

On the other hand, if φ= 1/3, then Dfj+1/2 can be expressed in the unified form

(24)

Then, the existing computer programmes for the Chakravarthy-Osher TVD
scheme can be rewritten very easily into programmes for this fourth-order
scheme.

In the previous method[4], in order to satisfy the TVD condition completely,
the condition Df = ∆f, that is, ∆3f = 0 was imposed near the extremum point of
f. From this condition, the fifth- and fourth-order correction terms in (23) and
(24) were restricted as

(25)

where
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(26)

minmod(x, y, z) = sign(x) max[0, min{|x|, sign (x) y, sign(x) z}].
The value of the parameter b1 is usually taken as 2.

In the Chakravarthy-Osher TVD scheme of (15), the second(third)-order
correction terms are restricted by operating the minmod function to the slopes
∆fj+1/2 to prevent the occurrence of new extremums of f caused by these
correction terms. From the condition that h

l+1/2 does not take a peak value of f,
the parameter b in (16) must be taken 1 < b ≤ (3 – κ)/(1 – κ). The values of Dfj+1/2
of (23) and (24) contain in general amplified disturbances compared with ∆fj+1/2
as shown in Figure 1. The fourth(fifth)-order correction terms in (19) of course
raises the accuracy of solution especially containing the weak discontinuity, but
often unstabilizes the solution. Therefore, in the present method these
correction terms are restricted by operating another minmod function to the
curvatures ∆2fj, in order to suppress the occurrence of new extremums of ∆f,
that is, new inflection points of f.

Figure 1.
Typical distributions of
slopes ∆fj+1/2, Df̃j+1/2 ≡
∆fj+1/2 – (∆2fj+1 – ∆2fj)/6
and Dfj+1/2 ≡ ∆fj+1/2 –
[minmod(∆2fj+1/2, 4∆2fj)
– minmod(∆2fj,
4∆2fj+1)]/6
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(27)

where

(28)

The range of parameter b2 is determined so that Dfj+1/2 does not take a peak
value. We first consider the case that |∆2fj|> b2|∆2fj+1|. Then

Since the value of Dfj+1/2 should not exceed the mean value of ∆fj+1/2 and ∆fj+3/2,
that is, ∆fj+1/2 + ∆2fj+1/2 as shown in Figure 1, we get the inequality

(29)

We can also derive the same inequality from another case that |∆2fj+1|>
b2|∆2fj|. We will take b = b2 = 4 in the numerical examples mentioned below.

Equations (21) to (28) can be extended to the MUSCL-type approach[8].

Efficient algorithms
Setting θ = 1 and ∆ξ i = const. = ∆ξ , and using the first-order upstream
differences, we can formally write the equations of delta-form implicit schemes
(10) and (12) as

(30)

where λ = ∆t/∆ξ , and ∇ i and ∆i are the backward- and forward-difference
operators in ξi direction respectively. Applying the approximate-factorization
method and the diagonalization of (8) to (30), we get

(31)

where

(32)

Ai
+ and Ai

– are the diagonal matrices composed of only positive and negative
eigenvalues respectively.
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hij
ll

= gij/gll

. Equation (31) is solved by dividing into the seven steps:

(33)

Thus, the three-dimensional flow problem of (30), that a system of linear
equations with a (7 × 7) block tri-diagonal matrix is solved, is reduced to the
three simple one-dimensional problems of (33), that seven systems of linear
equations with a scalar tri-diagonal matrix are solved. However, for the large
Courant number Ci = ∆t|Λi|/∆ξ , since errors caused by this factorization
increase markedly, the convergency of the solution deteriorates.

Equation (30) can be also rewritten by applying the recently developed
LU-SGS algorithm[9,10] as

(34)
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where

(35)

Further, in order to simplify the algorithm, the matrix D is diagonalized by
setting

(36)

where ρi = 1.01 × |λ i max|, and λ i max is the maximum eigenvalue of Ai.
Equation (34) is solved dividing into the two steps:
(I) Sweep from left bottom grid point

(37)

(II) Sweep from right top grid point

(38)

The errors caused by the factorization of (34) to (38) are relatively small, even
for the large Coulant number, and the convergency of the solution is
considerably improved compared with (31) to (33).

On the other hand, in order to remove the errors caused by the
diagonalization of (36) and further to improve the convergency of the solution,
the matrix D is factorized as

(39)

where ∑ is the semi-diagonally dominant matrix as

(40)

Then (34) can be split into six steps, and the systems of linear equations with
coefficient matrix ∑ can be solved easily by Gaussian elimination. This LU-
SGS-GE algorithm is like the LU-SGS-DC algorithm[11] except for some
differences in matrix forms of (9) and solution of the system of linear equations;
the details will be presented in the near future.

The flux vectors F̂i in RHS of (11) are expressed after linearization like (17) as
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(41)
where

(42)

(43)

(44)

We should say that the excellent computational results of compressible flows
containing discontinuities can be obtained only by using such an exact
linearization. The numerical flux in the MUSCL-type approach can be
linearized in a similar manner[4].

Numerical examples
For the simple steady compressible flow having shock waves, the
computational results by the Chakravarthy-Osher TVD scheme (15) and the
fourth(fifth)-order version (19) in general do not differ greatly, and the
differences between the previous method using the fourth-order corrections (25)
to prevent new extremum points completely and the present method using the
fourth-order corrections (27) to suppress new inflection points appear to be even
fewer. However, for some complicated flows so that the diffusive effects are
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decisive, the computational results, especially the distributions of fluid dynamic
losses and turbulence correlations, are appreciably different by (25) and (27). In
the computation of such flows, it is important to make use of the scheme which
has very few truncation and inherited errors.

Here the computational results are shown of steady and unsteady two-
dimensional transonic flows through a turbine cascade composed of VKI LS-59
blades, experimented by Kiock et al.[12]. Figure 2 shows the computational grid
of modified H-type having 181 × 61 grid points and the magnification near the
trailing edge of the blade. The distances from the wall to the neighbouring grid
point y+ are roughly less than one. The total temperature 290 K, the total
pressure 0.964 × 105 Pa and the inlet flow angle 30 deg as the upstream
boundary conditions, and the Mach number 0.99 as the downstream boundary
condition are imposed. The turbulence intensity 2 per cent at the upstream
boundary and the Reynolds number 8.5 × 105 in the downstream region are
assumed.

Steady flows
The actual flow through this turbine cascade is an unsteady flow containing
vortex streets from the trailing edge of the blades. However, if calculation of the
cascade flow problem is performed using the steady flow scheme of (10), then
the solution converges almost uniformly for an appropriate range of Courant
numbers and a steady flow solution can be obtained. Here, in order to calculate
the solution efficiently, the local time-step technique, widely-used in steady flow
calculation, is introduced, in which the local time step ∆t as

is used. Figure 3 shows the convergence histories of the solutions (the root-
mean-squared residuals of the continuity equation) obtained for the relatively
large Courant number CFL = 45, by the previous method using (25) and the
present method using (27). The computations in the early stage were performed
under the laminar flow condition and at CFL = 1. It is found from this figure
that the solution by the present method of (27) converges better than the
previous method of (25). The cause can be explained easily by the isentropic
Mach number distributions on the blade surfaces. Although the Mach number
distribution of (27) converges, the Mach number distribution of (25) oscillates in
time and the typical distribution at a time step contains some numerical
disturbances, as shown in Figure 4. The solution of (27) for CFL = 100
converged more rapidly, but the solution of (25) for CFL = 60 diverged. On the
other hand, if CFL is taken as less than 2 in the calculation using (25), then the
residuals can be reduced to a sufficiently low level, although, of course, the
computational efficiency deteriorates.



HFF
7,2/3

264

Unsteady flows
The unsteady solution of this turbine cascade flow problem can be obtained by
using the unsteady flow scheme of (12) with the higher-order scheme (21). The
computational grid and the boundary conditions are same as the steady flow.
The computation starts from the steady flow solution. The same time interval
∆t = 0.001 is used throughout the flow field. Then, the maximum value of CFL1

Figure 2a.
Computational grid for
turbine cascade with
VKI LS-59 blades –
whole view
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≡ ∆t (|U1| + c√
–––
g11)/∆ξ is very small, but the maximum value of CFL2 ≡ ∆t

(|U2| + c√
–––
g22)/∆ξ becomes about 20 on the solid wall. The iterations of (12) are

carried out four times at each time step. Figure 5 shows the time variations of
residuals. The residual values in the case of (27) are one unit smaller than those
of (25). Therefore, using (27) will make it possible to obtain accurate solutions
within a relatively small number of iterations. The time-averaged isentropic
Mach number distributions on the blade surfaces almost coincide with the
experimental data as shown in Figure 6, different from the steady flow.

Finally, the more subtle differences in some of the numerical results of this
unsteady turbine cascade flow, calculated by the previous method using (25)
and the present method using (27), are discussed. Figure 7 shows a comparison
of the contours of velocity component u. Both the figures reveal the existence of
vortex streets, clear left-running shock waves and vortex/shock-wave

Figure 2b.
Computational grid for

turbine cascade with
VKI LS-59 blades – near

trailing edge of blade
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Figure 4.
Typical isentropic Mach
number distributions on
blade surfaces for
steady flow

Figure 3.
A comparison of
convergence histories
for steady flow



Higher-order
high resolution

schemes

267

Figure 5.
A comparison of time-
variations of residuals

for unsteady flow

Figure 6.
Time-averaged

isentropic Mach number
distribution on blade

surfaces for unsteady
flow



HFF
7,2/3

268

interactions. Further, it can be observed that the space between the
neighbouring vortices of (27) is a little shorter than the space of (25), that is, the
Strouhal number of (27) is greater than (25), and that the behaviours of right-
running shock waves are somewhat different. The values of stagnation

Figure 7a.
Instantaneous contours
of velocity component u:
previous method using
(25)
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enthalpy H are constant in the isentropic flow without diffusion, and therefore
the contours of H in Figure 8 indicate the fluid dynamic losses; and the contours
of eddy viscosity µt in Figure 9 show the turbulence of the flow. It is found from
these figures that the values of u, H and µt calculated by the previous and

Figure 7b.
Instantaneous contours

of velocity component u:
present method using

(27)
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present methods are appreciably different. However, the estimation of these
differences is not yet ready for disclosure. Although it is not always easy to
determine the loss coefficient and outlet flow angle of the transonic turbine
cascade flows numerically, the calculated results of these quantities by the

Figure 8a.
Instantaneous contours
of stagnation enthalpy
H: previous method
using (25)
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present method agree very well with the experimental data[13]. Further, it can
be seen that the convergency of the solution is improved not only by the
stabilization measure of (27) and the LU-SGS-GE algorithm of (39) and (40) but
also by the exact linearization of (41) to (44).

Figure 8b.
Instantaneous contours
of stagnation enthalpy

H: present method using
(27)
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Concluding remarks
Numerical instabilities occurring in the process of numerical computation first
appear as inflection points, which then grow gradually and finally form
extremum points. Although the stabilization of the existing second-order TVD

Figure 9a.
Instantaneous contours
of eddy viscosity µt:
previous method using
(25)
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schemes has been performed so that the extremum points do not occur, if the
stabilization measure can be taken in the stage of occurrence of the inflection
points, the schemes would be better. In the existing Chakravarthy-Osher TVD
scheme, the values of the second(third)-order correction terms are restricted by

Figure 9b.
Instantaneous contours

of eddy viscosity µt:
present method using

(27)
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operating the limiter functions to the slopes ∆uj+1/2, in order to prevent the
occurrence of new extremum points. In the present scheme, in addition to this
restriction, the values of the fourth(fifth)-order correction terms are restricted
by operating another limiter function to the curvatures ∆2uj, in order to
suppress the occurrence of new inflection points. However, not all the inflection
points are suppressed, owing to numerical instabilities, only the inflection
points caused by the fourth(fifth)-order correction terms. In order to suppress
all the inflection points, it may be necessary to restrict appropriately not only
the fourth(fifth)-order correction terms but also the second(third)-order
correction terms. This remains a problem for future investigation.
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